Believe me when I say green!

Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2,3} F. Lamperti^{4,2} R. Terranova² Center for Environmental Economics Montpellier - 16 February 2023

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³London School of Economics, Grantham Research Institute ⁴Sant'Anna School of Advanced Studies

- Urgent to decarbonise
 - $\rightarrow\,$ Reorient private investment choices to low-carbon capital
- Firms' investment decisions depend on expected costs/profits
 - $\rightarrow\,$ Expectations on strength/timing of future climate policies
- How do firms form climate policy expectations?
 - Policy objectives as expectation anchor
 - Several longer-term announcements recently (net-zero dates \rightarrow implicit carbon price trajectory)
- But will policy-makers actually deliver?

Numerous recent cases of policy reversals

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

Common reason for reversals: perceived transition costs

- Concerns regarding costs (unemployment, stranding, financial volatility) associated with low-carbon transition
- $\rightarrow\,$ Revision/withdrawal of announced plans

Gilets Jaunes movement in France (2018)

Kazakhstan protests after LPG price cap lift (2022)

Heterogeneous climate policy sentiments

• Uncertainty + behavioural factors \rightarrow Heterogeneous beliefs on policy credibility \rightarrow Heterogeneous carbon price expectations

• However.. scarce data available!

Distribution of expected carbon price in the EU Emission Trading Scheme for different time horizons. Source: Cahen-Fourot et al. (2022). Data from Refinitiv (2021)

- Dynamic model focusing on investment allocation choices
 - Two technologies: low-carbon (1) vs high-carbon (h)
 - Investment allocation depends on heterogeneous expected cost differentials
- Carbon price expectations affect investment choices
 - Firms observe policy-maker climate policy announcements
 - They evaluate its credibility: believers (b) vs sceptics (s)
 - Policy-maker can default on goals with high transition risks
- Two key features of the model:
 - Heterogeneity of beliefs/expectations and behavioural frictions
 - Policy uncertainty and credibility

Overview of results

- Analytical results (using reduced version)
 - Two steady states can exist depending on tax announcement and policy-maker commitment level
 - Ambitious announcements and weak commitment create multiple equilibria (a 'high-carbon trap')
 - Behavioural frictions → 'behavioural premiums' on tax announcement and commitment minimum levels
- Numerical results (calibrated to EU economy)
 - Full commitment: decarbonisation almost always achieved but behavioural frictions affect transition speed
 - Weak commitment: loss of credibility can lead to vicious circles of increasingly high-carbon investments and weaker climate policies, ultimately leading to transition failure
 - In both cases: non-linear effects of belief polarisation

Literature

- Three broad literature connections
 - Climate policy credibility and uncertainty (e.g. Nemet et al. 2017; van der Ploeg and Rezai, 2020; Fried, 2021)
 - Policy time inconsistency (e.g. Kydland and Prescott, 1977; Barro and Gordon, 1983)
 - Bounded rationality and heterogeneous/biased expectations (Bordalo et al., 2022; Hommes, 2021)
- Few closely related papers
 - Cahen-Fourot et al. 2022: forward-looking probit model with capital 'stranding' expectations
 - Annicchiarico et al. 2022: belief switching in E-DSGE
 - Zeppini 2015; Mercure 2015: logit model for tech adoption
 - Cafferata et al. 2021; Davila-Fernandez et al. 2020: Switching green policy attitudes
 - Galanis 2022: International environmental agreements

The model

Methodological foundations

- Methodological foundations
 - Heterogeneous expectation framework a là Brock and Hommes (1997); see Hommes (2021)
 - Dispersion of beliefs/expectations due to 'unobservables' (discrete choice theory: McFadden, 1974)
 - Behavioural frictions interpretation
 - From 'neoclassical limit' without frictions to entirely random (full hedging) investment choices
- Two key behavioural dimensions in our model
 - Backward-looking responsiveness of beliefs to policy-maker credibility (β)
 - Forward-looking responsiveness of investment decisions to perceived cost differentials (γ)

- At time t₀, the policy-maker announces a schedule of future carbon tax targets \(\bar{\alpha}_t\)
- We assume an exponential tax announcement

$$\bar{\tau}_t = \bar{\tau}_0 (1 + \bar{g}_\tau)^t$$

where $\bar{\tau}_0$ is initial tax rate and \bar{g}_{τ} is the announced growth rate of τ .

- Firms have heterogeneous beliefs about credibility of policy commitment
 - Two belief categories: believers (b) trust policy-makers announcements more than sceptics (s)
- The expected tax growth rate is

$$E_j(g_{ au}) = \epsilon_j \bar{g}_{ au}$$

with $j = b, s, \epsilon_j \in [0, 1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

How do firms choose their beliefs?

- In every t, firms
 - Observe tax actually implemented $\boldsymbol{\tau}$
 - Compute accuracy $U_{j,t}$ of both belief predictions

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t| + (1 - \eta)U_{j,t-1}$$

• Believers' share $n \in (0,1)$ is determined by

$$n_t = \frac{\exp(-\beta U_{b,t-1})}{\sum_j \exp(-\beta U_{j,t-1})}$$

- β: belief responsiveness (to what extent firms react to prediction errors)
 - $\beta = 0$: high behavioural frictions and random choice
 - $\beta \to \infty:$ 'neoclassical limit', no behavioural frictions and bang-bang solutions

 Depending on expected tax, firms evaluate the net present value Θ_i of expected production costs of technology i

$$E_{j,t}(\Theta_{i,t}) = \sum_{r=1}^{R} D^{r} \theta_{i,t+r} \left[1 + E_{j,t-1}(\tau_{i,t+r}) \right]$$

where

- D: discount factor
- R: planning horizon
- θ : *i*-specific production costs
- τ : tax rate on high-carbon production costs θ_h

- Based on expected discounted technological costs $(E_{j,t}(\Theta_{l,t}))$, firms allocate their investment between low- and high-carbon
- Low-carbon investment share for belief type j, $\chi_{j,t} \in (0,1)$:

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{I,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

- γ: investment responsiveness (to what extent firms react to cost differentials)
 - $\gamma = 0$: high behavioural frictions and random choice
 - $\gamma \to \infty:$ 'neoclassical limit', no behavioural frictions and bang-bang solutions

• The low-carbon investment share for the overall economy is

$$\chi_t = n_{b,t}\chi_{b,t} + n_{s,t}\chi_{s,t}$$

• We define the low-carbon share of capital

$$\kappa_t \equiv \frac{K_{l,t}}{\sum_i K_{i,t}}$$

Transition risks and policy commitment

- Policy-maker evaluates transition risks as a function of
 - Announced policy stringency $(\bar{\tau})$
 - Carbon intensity of economic system (κ)
- Transition risk index $\pi \in [0, 1]$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks Chart

• Policy-maker then sets actual tax rate τ following:

$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0, 1]$ is the policy-maker commitment to climate objectives against transition cost mitigation

Analytical results

- Reduced version of the model
 - e.g. $\bar{\tau}$ fixed; $\eta = 1$; $\epsilon_s = 0$; $\epsilon_b = 1$
- Dynamical system: $\kappa_{t+1} = f(\kappa_t)$ Details
- We consider two scenarios, differing in terms of belief and investments responsiveness
 - Neoclassical limit: $\beta = \gamma = \infty$
 - Behavioural frictions: $0 < \gamma < \infty$; $0 < \beta < \infty$

Steady states in the neoclassical limit

- Low-carbon steady state $\kappa_I^* = 1$ exists if $\bar{\tau} > \frac{\theta_I \theta_h}{\theta_h} \equiv \bar{\tau}^*$
- High-carbon steady state $\kappa_h^* = 0$ exists if $\bar{\tau} < \bar{\tau}^*$ or $c < \frac{1}{2} \mu_1 \equiv c^*$, where $\mu_1 = \frac{\bar{\tau} \tau_0(1 + a\bar{\tau})}{2a\bar{\tau}^2} > 0$

Steady states under behavioural frictions

• A low-carbon steady state $\kappa_l^* = 1 - \lambda_l$ exists if a positive real number $\tilde{\lambda}_l$ exists such that Details

$$\bar{\tau} > \frac{\theta_l - \theta_h}{\theta_h} + \nu_{\tau l} \equiv \bar{\tau}^{**} \quad \text{and} \quad c > \frac{1}{2} - \mu_2 + \nu_{cl} \equiv c^{**}$$

• A high-carbon steady state $\kappa_h^* = \chi_s + \lambda_h$ exists if a positive real number $\tilde{\lambda}_h$ exists such that Details

$$c < rac{1}{2} - \mu_3 +
u_{ch} \equiv c^{***}$$

- ν parameters are 'behavioural premiums':
 - The higher behavioural frictions, the stronger should be tax announcements and commitment for low-carbon SS to exist
 - But they also decrease the commitment level below which a high-carbon SS exists

Steady states in the behavioural frictions

- Compared to neoclassical limit scenarios, two new regions:
 - Unambitious but committed policy-maker \rightarrow mid-carbon SS
 - Very ambitious but weakly committed policy-maker \rightarrow Unique high-carbon SS

High-carbon trap drivers

Bifurcation diagrams. Default parameter values: $\bar{\tau} = 6$, c = 0.3, $\gamma = 0.5$, $\beta = 1$.

Numerical Results

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Behavioural parameters
 - In particular: investment and belief responsiveness β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on policy objectives + IAM projections
 - Scenario analysis
- Time: 320 quarters (2020-2100)

Details

Benchmark transition scenario

Evolution over time of selected variables under full commitment (c = 1).

The role of behavioural frictions under full commitment

Low-carbon capital share κ as a function of belief responsiveness β and investment responsiveness γ , under c = 1, in (a) 2050 and (b) 2080.

- Behavioural factors affect transition speed
- Higher belief frictions (low β) hamper the transition
- Non-linear impact of γ in the medium-run

The credible commitment problem

 Weak commitment → credibility loss → more high-carbon investments → higher transition risks → further distance from target → further loss of credibility → .. and so on

Tax announcements and policy-maker's commitment

Low-carbon capital share κ as a function of the tax target growth rate \bar{g}_{τ} and commitment c, in (a) 2050 and (b) 2080.

• High ambition and low commitment endogenously lead to a transition failure

The role of behavioural frictions under weak commitment

Low-carbon capital share κ as a function of belief responsiveness β and investment responsiveness γ , under c = 0.3, in (a) 2050 and (b) 2080.

- Higher β hampers transition as firms realise weak commitment
- Even higher β allows transition to take and keep enough momentum in early decades

Belief responsiveness and belief polarisation

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and belief responsiveness β , under c = 0.3, in (a) 2050 and (b) 2080.

- For higher β , non-monotonic effect of belief polarisation
- But for lower β , strong polarisation leads to transition failure

Conclusions

Conclusions

- Transition model with
 - Behavioural frictions creating heterogeneity of expectations
 - Policy uncertainty and credibility
- Main results
 - Climate policy should be both ambitious and credible
 - Danger: Ambitious announcements by weakly committed policy-maker \rightarrow emergence of high-carbon traps
 - Behavioural frictions (heterogeneity) makes the policy-maker's job harder, although they also help avoiding very bad equilibria
 - Belief polarisation can have non-linear effects on transition dynamics

• Policy implications

- Data on expectations and their distribution needed
- Ability to orient expectations: what is most appropriate policy/institutional framework?
- Get the ambition right: too little and too much are both dangerous for transition dynamics
- Further work
 - Endogenous commitment; electoral cycles
 - Wider macro behaviour (endogenous growth)
 - Financial investment choices
 - Climate physical impacts

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Additional slides

Transition risk index

Transition risk index π as a function of κ and $\overline{\tau}$, for two distinct levels of a.

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - + $\bar{\tau}$ is treated as a fixed parameter
 - $\eta = 1$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

- $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$egin{split} m_{b,t+1} &= rac{1}{1+\exp\left(-eta\left(2 au_t-ar{ au}_0-ar{ au}
ight)
ight)} \ au_t &= ar{ au}\left(c+rac{1-c}{1+a(1-\kappa_t)ar{ au}}
ight) \end{split}$$

Dynamical system and steady states

Dynamical system in κ

$$\kappa_{t+1} = (\chi_b - \chi_s) n_{t+1} + \chi_s \equiv f(\kappa_t),$$

with

$$n_{t+1} = \left[1 + \exp\left(-\beta \left\{2\bar{\tau}\left[c + \frac{1-c}{1+a(1-\kappa_t)\bar{\tau}}\right] - \tau_0 - \bar{\tau}\right\}\right)\right]^{-1}$$

Proposition 1. $f(\kappa)$ has at least one stable equilibrium and generally an overall odd number of equilibria exists

- Equilibria with odd index are stable
- Equilibria with even index are unstable

Back

Steady states under behavioural frictions (I)

Proposition 3 (part I) Under the assumption of finite β and γ ,

(i) A low-carbon steady state $\kappa_l^* = 1 - \lambda_l$ exists if a positive real number $\tilde{\lambda}_l$ exists such that

$$\bar{\tau} > \frac{\theta_l - \theta_h}{\theta_h} + \nu_{\tau l} \equiv \bar{\tau}^{**} \quad \text{and} \quad c > \frac{1}{2} - \mu_2 + \nu_{cl} \equiv c^{**}$$
(1)

where

$$\begin{split} \tilde{\lambda}_{I} &= \lambda_{I} + \varepsilon_{I}, \text{ with } \varepsilon_{I} \text{ a small positive number and} \\ \tilde{\lambda}_{I} &\in \left(0, \frac{1}{2}\right), \\ \nu_{\tau I} &= -\ln\left(\frac{\tilde{\lambda}_{I}}{1 - \tilde{\lambda}_{I}}\right) \rho\{\gamma \theta_{I}(1 + \rho) \left[1 - (1 + \rho)^{-(R+1)}\right]\}^{-1} \\ \nu_{cI} &= -\ln\left(\frac{\chi_{b} - 1 + \tilde{\lambda}_{I}}{1 - \tilde{\lambda}_{I} - \chi_{s}}\right) (2\bar{\tau}\beta)^{-1} \left(1 + \frac{1}{a\tilde{\lambda}_{I}\bar{\tau}}\right), \text{ and} \\ \mu_{2} &= \frac{\bar{\tau} - \tau_{0}(1 + a\tilde{\lambda}_{I}\bar{\tau})}{2a\tilde{\lambda}_{I}\bar{\tau}^{2}} > 0. \end{split}$$

Proposition 3 (part II) Under the assumption of finite β and γ ,

(ii) A high-carbon steady state $\kappa_h^* = \chi_s + \lambda_h$ exists if a positive real number $\tilde{\lambda}_h$ exists such that

$$c < \frac{1}{2} - \mu_3 + \nu_{ch} \equiv c^{***}$$
 (2)

where

$$\begin{split} \tilde{\lambda}_{h} &= \lambda_{h} + \varepsilon_{h}, \text{ with } \varepsilon_{h} \text{ a small positive number and} \\ \tilde{\lambda}_{h} &\in (0, \chi_{b} - \chi_{s}), \\ \nu_{ch} &= -\ln\left(\frac{\chi_{b} - \chi_{s} - \tilde{\lambda}_{h}}{\tilde{\lambda}_{h}}\right) (2\bar{\tau}\beta)^{-1} \left\{1 + \frac{1}{a[1 - (\chi_{s} + \tilde{\lambda}_{h})]\bar{\tau}}\right\}, \\ \text{and} \\ \mu_{3} &= \frac{\bar{\tau} - \tau_{0}\{1 + a[1 - (\chi_{s} + \tilde{\lambda}_{h})]\bar{\tau}^{2}\}}{2a[1 - (\chi_{s} + \tilde{\lambda}_{h})]\bar{\tau}^{2}} > 0 \end{split}$$

Proposition 4. Once the planned tax meets its condition set in (1), a sufficient but not necessary condition for the uniqueness of the low-carbon steady state is:

$$\bar{\tau} < \frac{1}{\beta(1-c)}.\tag{3}$$

- Exogenous macro landscape: $g_Y \approx 2\%$ per year
- European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	gy	0.5%
Depreciation rate	δ	1.77%
Initial low-carbon capital share	κ_0	0.2
Low- to high-carbon production cost	$\frac{\theta_I}{\theta_h}$	1.36

Calibration: Beliefs and investment decisions

- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief responsiveness
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment responsiveness $\gamma=1$
 - χ to fit initial investment shares values
 - Transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	1.7%
Planning horizon	R	120
Initial shares of believers	<i>n</i> 0	0.3
Policy trust parameters	$\epsilon_b;\epsilon_s$	1; 0
Belief responsiveness	β	1
Memory parameter	η	0.5
Investment responsiveness	γ	1

Calibration: Policy decisions

- Current tax $\bar{\tau}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a = 1 to have low transition risk costs in 2020 ($\pi_0 \approx 0.15$) and have $\pi_0 \approx 0.5$ for $\bar{\tau} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$\bar{ au}_0$	0.15
Announced tax growth rate	$ar{g}_ au$	0.016
Transition risk index parameter	а	1
Policy-maker tax commitment	С	[0,1]

Back

Investment responsiveness and belief polarisation (c = 1)

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and investment responsiveness γ , under c = 1, in (a) 2050 and (b) 2080. All other parameters at their default value.

Belief responsiveness and belief polarisation (c = 1)

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and belief responsiveness β , under c = 1, in (a) 2050 and (b) 2080. All other parameters at their default value.

Investment responsiveness and belief polarisation (c = 0.3)

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and investment responsiveness γ , under c = 0.3, in (a) 2050 and (b) 2080. All other parameters at their default value.